King Abdul Aziz University Mathematics Department Workshop 9 Professor Hamza Ali Abujabal

Faculty of Sciences
Math 110
Section 3.4+3.5
Prof_h_abujabal@yahoo.com

- 1) $\lim_{x \to 3^+} \frac{2}{x 3} =$
- \boxed{a} 0
- $b \frac{2}{3}$
- c $-\infty$
- $d \propto \Theta$

- 2) $\lim_{x \to 3^{-}} \frac{2}{x 3} =$
- *a* 0
- $\boxed{b} \frac{2}{3}$
- $c \infty \Theta$
- d ∞

- 3) $\lim_{x \to 3^+} \frac{-2}{x 3} =$
- <u>a</u> 0
- $\boxed{b} \frac{2}{3}$
- $c \infty \Theta$
- d ∞

- 4) $\lim_{x \to 3^{-}} \frac{\overline{-2}}{x 3} =$
- a 0
- $b \frac{2}{3}$
- c $-\infty$
- $d \propto \Theta$

- 5) $\lim_{x \to -3^+} \frac{2}{x+3} =$
- *a* 0
- \boxed{b} $-\frac{2}{3}$
- c $-\infty$
- $d \propto \Theta$

- 6) $\lim_{x \to -3^{-}} \frac{2}{x+3} =$
- <u>a</u> 0
- $b \frac{2}{3}$
- $c \infty \Theta$
- $d \propto$

- 7) $\lim_{x \to 2^+} \frac{3x 1}{x 2} =$
- a 0
- b $-\infty$
- $c \frac{1}{2}$
- $d \propto \Theta$

- 8) $\lim_{x \to 2^{-}} \frac{3x 1}{x 2} =$
- a 0
- $b \infty \Theta$
- c $\frac{1}{2}$
- d ∞

- 9) $\lim_{x \to -2^+} \frac{1-x}{(x+2)^2} =$

- $[a] 0 \qquad [b] -\infty \qquad [c] \frac{1}{2}$
 - $d \propto \Theta$

- 10) $\lim_{x \to -2^{-}} \frac{1-x}{(x+2)^2} =$

- $[a] 0 \qquad [b] -\infty \qquad [c] \frac{1}{2} \qquad [d] \infty \Theta$
 - 11) $\lim_{x \to -2^+} \frac{x 1}{(x + 2)^2} =$
- $[a] 0 \qquad [b] -\infty \Theta \qquad [c] \frac{1}{2}$
- d ∞

- 12) $\lim_{x \to -2^{-}} \frac{x-1}{(x+2)^{2}} =$
- $a 0 \qquad b \infty \Theta$
- $c \frac{1}{2}$
- d ∞

- 13) $\lim_{x \to 2^{+}} \frac{6x 1}{x^{2} 4} =$

- $[a] 0 \qquad [b] -\infty \qquad [c] \frac{1}{4} \qquad [d] \infty \Theta$
 - 14) $\lim_{x \to 2^{-}} \frac{6x 1}{x^2 4} =$
- $[a] 0 \qquad [b] -\infty \Theta \qquad [c] \frac{1}{4}$
- d ∞

- 15) $\lim_{x \to -2^+} \frac{6x 1}{x^2 4} =$
- $a 0 \qquad b -\infty$
- $c \frac{1}{4}$
- $d \propto \Theta$

- $\frac{16}{16} \lim_{x \to -2^{-}} \frac{6x 1}{x^2 4} =$
- $[a] 0 \qquad [b] -\infty \Theta \qquad [c] \frac{1}{4}$
- d ∞

- 17) $\lim_{x \to -2^{-}} \frac{6x 1}{x^2 x 6} =$
- a 0
- b $-\infty$
- c $-\frac{1}{2}$
- $d \propto \Theta$

- 18) $\lim_{x \to -2^+} \frac{6x-1}{x^2-x-6} =$
- $a 0 \qquad b \infty \Theta$
- $c \frac{1}{2}$ $d \propto$

- 19) $\lim_{x \to 3^+} \frac{-1}{x^2 x 6} =$
- a 0
- $b \infty \Theta$
- $c \frac{1}{2}$
- d ∞

- 20) $\lim_{x \to 3^{-}} \frac{-1}{x^2 x 6} =$
- <u>a</u> 0
- b $-\infty$
- $c \frac{1}{2}$
- $d \propto \Theta$

- 21) $\lim_{x \to (\pi/2)^+} \tan =$
- |a| 0
- $b \infty \Theta$ $c \frac{\pi}{2}$
- $|d| \infty$

- 22) $\lim_{x \to (\pi/2)^{-}} \tan =$
- a 0

- 23) The vertical asymptote of $f(x) = \frac{1-x}{2x+1}$ is

- $\boxed{a} \quad y = -\frac{1}{2} \qquad \boxed{b} \quad x = \frac{1}{2} \qquad \boxed{c} \quad x = -\frac{1}{2} \quad \Theta \qquad \boxed{d} \quad y = \frac{1}{2}$

- 24) The vertical asymptote of $f(x) = \frac{3-x}{r^2 4}$ is

- $y = \pm 2$ b $x = \pm 2$ Θ c x = -1 d y = -125) The vertical asymptote of $f(x) = \frac{3-x}{x^2-x-6}$ is

- $y = \pm 2$ b x = -3,2 c $\Theta x = -2,3$ $26) \text{ The vertical asymptote of } f(x) = \frac{7-x}{x^2 5x + 6} \text{ is}$

- y = 2,3 $b x = 2,3 \Theta$ c x = -3,-2 d y = -3,-227) The vertical asymptote of $f(x) = \frac{x-7}{x^2+5x+6}$ is

- $\boxed{b} x = 2,3 \qquad \boxed{c} x = -3,-2 \Theta$
- d y = -3, -2

28) The vertical asymptote of $f(x) = \frac{x-7}{x^2+3x}$ is
$\boxed{a} y = 0.3 \qquad \boxed{b} x = 0.3 \qquad \boxed{c} x = -3.0 \ \Theta \qquad \boxed{d} y = -3.0$
29) The vertical asymptote of $f(x) = \frac{x-7}{x^2-3x}$ is
$\boxed{a} y = 0.3 \qquad \boxed{b} x = 0.3 \Theta \qquad \boxed{c} x = -3.0 \qquad \boxed{d} y = -3.0$
30) The vertical asymptotes of $f(x) = \frac{2x^2 + 1}{x^2 - 9}$ are
$\boxed{a} y = \pm 3 \qquad \boxed{b} x = \pm 3 \Theta \qquad \boxed{c} x = 2 \qquad \boxed{d} y = 2$
31) The function $f(x) = \frac{x+1}{x^2-9}$ is
\boxed{a} continuous at $a = 2 \Theta$ \boxed{b} discontinuous at $a = 2$
32) The function $f(x) = \frac{x+1}{x^2-9}$ is
a continuous at $a = \pm 3$ b discontinuous at $a = \pm 3 \Theta$
The function $f(x) = \frac{x+1}{x^2-9}$ is discontinuous at
$\boxed{a} \ 9 \qquad \boxed{b} \left[-3,3 \right] \qquad \boxed{c} \left(-\infty, -3 \right) \cup \left(3, \infty \right) \qquad \boxed{d} \ \pm 3 \ \Theta$
The function $f(x) = \frac{x+1}{x^2-9}$ is continuous on
$ \boxed{a} \ 9 \qquad \boxed{b} \ [-3,3] \qquad \boxed{c} \ \mathbb{R} \setminus \{\pm 3\} \ \Theta \qquad \boxed{d} \ \pm 3 $
35) The function $f(x) = \begin{cases} \frac{\sin 3x}{x} & : x \neq 0 \\ 3 & : x = 0 \end{cases}$ is
\boxed{a} continuous at $a = 0$ Θ \boxed{b} discontinuous at $a = 0$
36) The function $f(x) = \begin{cases} \frac{\sin 3x}{x} & : x \neq 0 \\ 5 & : x = 0 \end{cases}$ is
a continuous at $a = 0$ b discontinuous at $a = 0$ Θ
37) The function $f(x) = \begin{cases} \frac{2x^2 - 3x + 1}{x - 1} & : x \neq 1 \\ 7 & : x = 1 \end{cases}$ is
\boxed{a} continuous at $a = 1$ \boxed{b} discontinuous at $a = 1$ Θ

```
The function f(x) = \begin{cases} \frac{2x^2 - 3x + 1}{x - 1} & : x \neq 1 \\ 1 & : x = 1 \end{cases} is
     38)
                                               b discontinuous at a = 1
|a| continuous at a = 1 \Theta
                    The function f(x) = \frac{x^2 - x - 2}{x - 2} is
                     The function f(x) = \begin{cases} 2x + 3 & : x > 2 \\ 3x + 1 & : x \le 2 \end{cases} is
|a| continuous at a=2
                                                 b discontinuous at a = 2
|a| continuous at a = 2 \Theta
                     The function f(x) = \frac{x+3}{\sqrt{x^2-4}} is continuous on
                     \boxed{b} \left(-2,2\right) \quad \boxed{c} \left(-\infty,-2\right) \cup \left(2,\infty\right) \quad \Theta \qquad \boxed{d} \left(-\infty,-2\right] \cup \left[2,\infty\right)
The function f\left(x\right) = \sqrt{x^2 - 4} is continuous on
    42)
                     The function f(x) = \sqrt{x} is continuous on

\underbrace{b(-2,2) \quad c(-\infty,-2) \cup (2,\infty)}_{\text{c}(-\infty,-2) \cup (2,\infty)} \underbrace{d(-\infty,-2) \cup [2,\infty) \Theta}_{\text{c}(-\infty,-2) \cup (2,\infty)}

The function f(x) = \sqrt{4-x^2} is continuous on

\underbrace{b(-2,2) \quad c(-\infty,-2) \cup (2,\infty)}_{\text{c}(-\infty,-2) \cup (2,\infty)} \underbrace{d(-\infty,-2) \cup [2,\infty)}_{\text{c}(-\infty,-2) \cup (2,\infty)}

    43)
    The function f(x) = \frac{x+3}{\sqrt{1-x^2}} is continuous on
                               b (-2,2) \Theta c (-\infty,-2) \cup (2,\infty) d (-\infty,-2] \cup [2,\infty)
a \begin{bmatrix} -2,2 \end{bmatrix}
    45) The function f(x) = \frac{x+1}{x^2-4} is continuous on
    a (-\infty,\infty)
                      b = [4,\infty) c = [-1,\infty) d = [-4,\infty)
a [1,\infty) \Theta
    48) The function f(x) = 5^x is continuous on
a (-\infty,0)
                                          b \begin{bmatrix} -1,1 \end{bmatrix}
                                                                            |c| (0,\infty)
    49) The function f(x) = e^x is continuous on
                                                                                                             \boxed{d} \mathbb{R} = (-\infty, \infty) \Theta
|a| (-\infty,0)
                                          |b|[-1,1]
                                                                            |c| (0,\infty)
```

50) The function $f(x) = \sin^{-1}(3x - 5)$ is continuous on $\boxed{b} \left[-\frac{4}{3}, 2 \right] \qquad \boxed{c} \quad \boxed{[-2,2]} \qquad \boxed{d} \left(\frac{4}{3}, 2 \right)$

51) The function $f(x) = \cos^{-1}(3x + 5)$ is continuous on

 $\frac{1}{3} \begin{bmatrix} \frac{4}{3}, 2 \end{bmatrix} \quad \boxed{b} \begin{bmatrix} -\frac{4}{3}, 2 \end{bmatrix} \Theta \quad \boxed{c} \quad [-2, 2] \quad \boxed{d} \left(\frac{4}{3}, 2 \right)$ 52) The number c that makes $f(x) = \begin{cases} c + x & : x > 2 \\ 2x - c & : x \le 2 \end{cases}$ is continuous at x = 2 is

|b| -1 $|a| -2 \Theta$

54) The number c that makes $f(x) = \begin{cases} \frac{\sin kx}{x} + 2x - 1 & : x < 0 \\ 3x + 4 & : x \ge 0 \end{cases}$ is continuous at

0 is

55) The value c that makes $f(x) = \begin{cases} cx^2 + 2x & : x \le 2 \\ x^3 - cx & : x > 2 \end{cases}$ is continuous at 2 is

 $\boxed{b} \pm \frac{\sqrt{7}}{3} \qquad \boxed{c} \ 0 \qquad \boxed{d} \pm 1 \Theta$

57) The number c that makes $f(x) = \begin{cases} x-2 & : x > 5 \\ cx-3 & : x \le 5 \end{cases}$ is continuous at 5 is

 $\boxed{a} - \frac{6}{5} \qquad \boxed{b} \quad \frac{5}{6} \qquad \boxed{c} \quad 2 \qquad \boxed{d} \quad \frac{6}{5} \quad \Theta$

58) The number c that makes $f(x) = \begin{cases} x+3 & :x > -1 \\ 2x-c & ;x \le -1 \end{cases}$ is continuous at -1 is